AD=A082 852 STANFORD UNIV CA DEPT OF STATISTICS F/6 1271
A SEQUENTIAL CONFIDENCE INTERVAL FOR THE ODDS RATIO.(U)
FEB 80 D SIEGMUND NOOO18=77=C=0306

NL

UNCLASSIFIED TR-7




g 2
== = 12 po»
s ==

22 s

o

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS:1963-A




- GINE”

ADAU8 2852

!

i R\ |
T R'_L‘fl

—

_* l

@ j,fzs

@EECHNICAL #EQ{ ho. 7

"}
QUENTIAL C CONFIDENCE JINTERVAL
FOR THE ODDS RATIO

Qf] 0. fsteawo |

R O

(72)27 |

—— 4

PREPARED UNDER CONTRACT

§
b
4
4

(15T

Ngha-77-C, 036, eummemmmel / N SF -MCS1T7-1(,
FOR THE OFFICE OF NAVAL RESEARCH
DTIC

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA

Approved for public releass
Distribution Unlimited

DISTRIBUTION STATEMENT A

SELECTEu
33 580

ey
80 4 9707

e ——




N YR = M < et o

A SEQUENTIAL CONFIDENCE INTERVAL
FOR THE ODDS RATIO

by

D. Siegmund

_
Technical Report No. 7

February 2, 1980

Prepared under Contract
/ﬁ00014-77—c-0306 (NR-042-373)

for the Office of Naval Research

D. Siegmund, Project Director

Reproduction in whole or in part is permitted for
any purpose of the United States Government

/

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA

Also issued as Technical Repqggﬂﬂg._l4l under National Science
=I8474 - Department of Statistics,
Stanford University.': -




|
)
]
] [ ]
'i
h
¥
‘ !
\ £
¥
1 i
l
\ i
R
1
St B

A sequential fixed width confidence interval is proposed for
the log odds ratio of a 2x2 table. It is shown that the proposed
interval has asymptotically the correct coverage probability and is

asymptotically efficient uniformly in the unknown parameters.
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A SEQUENTIAL CONFIDENCE INTERVAL FOR THE ODDS RATIO

1. Introduction

For 1 = 1,2 let s1ni and fm1 =n - sm:l

numbers of successes and failures in n, independent Bernoulli trials

be respectively the

with constant success probability p; on each trial., A simple large

sample approximate confidence interval for the log odds ratio,

log (p;9,/P,9;)» is

(1) log(s, f2n2/32n2f1n )tz lny /sy £ +nyle,,

f2n ]& ’
1 1 171 2 “72

where g: (2'lr)_!5 exp(-x2/2)dx = af2 (Cox, 1970, p. 35). The confi-
dence c;:fficient, l-a, is asymptotically correct for fixed PysP, 88
min(nl,nz) + oo,

These intervals have two defects when Py and P, may be near 0
or 1. On the one hand the rate of approach to normality can be very
slow, so that use of asymptotic theory is questionable. More

importantly, however, even with exact calculations, no fixed sample

size design will permit one to estimate the log odds ratio by an

interval of preassigned width in these boundary cases.

For one binomial population with success probability p,

Robbins and Siegmund (1974) proposed a sequential scheme for obtain-

ing approximately a confidence interval of preassigned width for
log(p/q). However, they do not consider the question of the uni-
formity of their procedure for p near 0 or 1, when a sequential pro-

cedure would presumably be of greatest value.




The purpose of this paper is to consider the two population

analogue of the procedure of Robbins and Siegmund. The procedure

will be seen to attain asymptotically the required coverage prob-

ability and to be asymptotically efficient uniformly in 0< Py» Py <1,
In Section 2 the one~population case is reviewed, and the
results of Robbins and Siegmund are appropriately strengthened to
provide the tools for the two-population problem. It is also shown
: that Robbins and Siegmund's uncritical acceptance of Haldane's (1955)
modification of the empirical log odds ratio is inappropriate in the
sequential case.
Section 3 1is concerned with the case of two populations.
Remarks about further extensions are collected in Section 4,
3
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2, One Population

Let x,,X,,+.. be independent with l’{xJ =1} = p,
P{xj-O} =q=1-p(J=1,2,0cc). Let g =x; + ..o +x and
f,=n=-s. For largen log(sn/fn) is spproximately normally dis-
tributed with mean log (p/q) and variance 1/(npq) . Hence to find a
confidence interval for log(p/q) of preassigned width, or equivalently
in large samples to estimate log(p/q) by an estimator with preassigned

variance 1/c, Robbins and Siegmund (1974) define

(2) T = inf{n: snfn>nc} .

They propose estimating log(p/q) by

(3) logl(sy + D/ (£, + D1

which they show is asymptotically normally distributed with mean
log(p/q) and variance 1/c as ¢ + ®, The modification of the empiri-
cal log odds by adding 1/2 to numerator and denominator was
originally suggested by Haldane (1955) as a bias reducing device in
the fixed sample case.. Robbins and Siegmund also show that
ET ~ c¢/(pq) as ¢ + », This may be interpreted as showing that their
procedure is asymptotically efficient in the sense of requiring
asymptotically about the same number of ob;ervation- as a fixed sam-
ple procedure chosen to be appropriate for a value Po vhich happens
to be the actual value of p.

In this section it is shown that the asymptotic normality of
(3) holds uniformly over 0 < p < 1, This is in marked contrast to

the fixed sample case, as was noted in the Introduction. It will

. 4 - - - PR R el b T e - -
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also be shown that the analogue of Haldane's bias reducing device in
this sequential context is to subtract % from numerator and denomin-
ator of the empirical odds ratio. However, for simplicity and because
the appropriate modification for the two sample case is unknown, in
most of what follows only the unmodified empirical odds ratio is
considered.

The main result of this section is Theorem 1. Lemma 1, which
was obtained by Robbins and Siegmund (1974), is of interest in its
own right. It says that the asymptotic efficiency of (2) is uniform

in 0 < p < 1. Repeated use will be made of the algebtafc identity

(4) snfn/n = (q- p)(sn- np) + npq - (sn- np)zln .

Theorem 1. For the stopping rule T defined in (2), uniformly in

0<p<1

1im P{ck[log(sT/fT)— log(p/q)]g_x} = {(x) ,
[epad

where
$(x) = (2‘!!)-';"t 1_': exp(-u2/2)du .

The proof utilizes the following lemmas. For the simple

proof of Lemma 1 based on (4), see Robbins and Siegmund (1974).

Lemma 1. ¢ < pq ET < (c+ 1)/[1- (4c)"1].

et .y,
c L -




Lemma 2. There exists a <o such that for all c > Coand 211 0 < p <1

(pQ)2 E(T- c/pg)? < 4c .

Lemma 3. For each 0 <€ <1 and ¢ > Coe where c, is defined as in

0
Lemma 2,

P{la-pT| 2 pa 1} <ksec ,
vhere K does not depend on € or c.

Proof of Lemma 2. Squaring (4) gives

(snfn/n- c)2 = (q- p)z(su- t\p)2 + (pq)z(n- c/pq)2 + (sn- np)“/nz

+ 2{(a- p) (s - np) (pan- c) - (q- p)(s_- np) 3/n- (ape- ) (s - np) 2} .
By the Schwarz inequality and Wald's second moment identity

|E{(sT— pT) (T~ c/pq)}| < {pqET E(T- c/pq)zlk .

Hence, since (sTfT/T- c)2 < 1, Wald's second moment identity yields
2 2 2 2,3
1> (a- P)“pq E(D)+ (pq)” E(T- c/p9)”- 2palq- pl{pq E(TIE(T~ c/pq)“}

- 2|q- plpq ET - 2(pq)? ET ,

or

(pa)? E(T- c/pa)2- 2pqlq- p|{pqET E(T- c/pq) 2} %+ pa(q- p)? BT

<1+ 2pq ET .

-~ v " j - .
. hatd et e e\ v . ow . . -




Taking square roots in this expression, then rearranging terms and
squaring yields
(pq)2 E(T- c/pt:[)2 < {(pqET)!’ + (1 +2pq E'I‘)!’}2
<1+ 3pq ET <1+ 3(c+1)/(1-1/4c) ,
where the last inequality follows from Lemma 1. This completes the

proof.

Proof of Lemma 3. Let 0 < § < 1 and n, = c¢/pq. By Lemma 2

P{|T- no|> dc/pql 5_(6c)~2 (pq)2 E(T-n0)2 5_4/62c .
Hence, by Wald's lemma for the second moment and Lemma 1

P{Is,r— pT|> epqT} < 4/8% + P{IsT-pT|> epqT, lT-nol_{ 8c/pql
< 4/62c + P{IBT- pT|> e(1- 8)c} < 4/62c + E(s, - pT)Z/EZ(l- 6)2c2

< 4/8% + 21eta-6)2 ) .

Proof of Theorem 1. From the mean value theorem follows

¢¥[1og(s,/)-108(p/a) ] = (o, ~pT) /paT+ <*[(s,~pD) /pqu[;—(ﬁ—, - 1}
T T

= ng(a~PD)/ (p) T + 03 [(ay= 81/ (p0)" 11 Ao - 1] '

vhere In.r- ol < 171 sT—pl, and as before n) = c/pq. Hence it suf-

fices to show that uniformly in 0 < p < 1




T-“
~

7

<

1im Pini(ey - pD)/(p0) * T < x} = 8(x)
oo

The second statement follows easily from Lemma 3, and the first may
be obtained by minor modifications in the standard proof of
Anscombe's theorem (e.g., Rényi, 1966, p. 390).

An asymptotically more precise approximation to E(T) than
that provided by Lemma 1, although one which is decidedly not uniform

in p, is
1 2,1
(5) PAET=c+3(p-q)" +3pa+0(1) (c+=) ,

which is valid for all p for which (p/q)2 is irrational. This result
follows easily from (4) and Theorem 2 of Lai and Siegmund (1979).

As an estimator of log(p/q), Haldane (1955) considered
log{(an-a)/(fni-a)} and showed by a Taylor series expansion that the
choice of a minimizing the asymptotic bias of this estimator is
a --%. The following heuristic calculation shows that a = -~% is
appropriate in the present context. The machinery for justifying
this calculation may be found in Pollak and Siegmund (1975). It
should be noted that this result is appropriate for the stopping
rule T defined by (2). It does not carry over to the two-population

case discussed in Section 3.




A two term Taylor series expansion gives

log{(s,r +a)/(fT+a)} - log(p/q) = (s,r- pT +a)/pT - (ft-q'r+ a)/qT

--(s,l.-p'l‘)2/2(p'1‘)2 + (fT-qT)ZIZ(qT)z + op(c-l) .
Since T & c¢/pq and hence E{(s,r-p'l‘)zl‘l‘z}
~ (pac’H? E{(sy o0 = (pac™H? pq BT ~ GO/

one obtains

{ Ellos{(s.r+a)/(f1.+a)}] ~ log(p/q)

(6)
~ El(s-pD) /pat} + ¢ T@-p)(a-3) .

It is shown below that
-1
E{(s; ~pT)/T} ~ ¢~ palq-p) (c+= ,

which shows that the right hand side of (6) is ~ c-l(q -p){(a +%),

leading to the optimal choice a = - -?,_‘

; i Let ET - sTfT/T - ¢. By (4) and Taylor expansions, one

t obtains

(85-PD/T = (a-p) "L(e +E) (pae ™t - (pac™H (T~ e/pa)

+ e T-c/p® + o) - @-» 7V pa + (a- 7T oy el

It 1is easy to see from (4) that c + EET = pq ET - pq + o(1); and




Robbins and Siegmund (1974) have obtained E('I‘-c/pq)2 =
(q~ 1:o)2 c/ (pq)2 + 0(1). Hence by the asymptotic independence of E‘l‘

and c-;"'('l‘-c/pq) (Lai and Siegmund, 1977),
-1 -1 -1,2
E{(sT-pT)/T} = (q-p) (e +EE ) {pac - (pac ") “[EE,/pq+1]
+ pacH g% /) - (a7 pq + GO/ @-pIe + 0(c™H)

~ ¢L patap) »

B S

as claimed.




3. Two Populations

Consider again the two population case described in the
introduction and suppose that obgervations are taken in pairs, one
from each population, so n; = n, = n, say. This restriction is
stronger than necessary, but it simplifies the subsequent analysis.
It is easy to modify the results to accommodate the case in which
observations are taken from the two populations in an arbitrary fixed
ratio. It seems possible to achieve a slight reduction in the total
expected sample size by choosing the sampling rates adaptively, but
the fairly small improvement seems not to be worth the considerable
complication in analysis.

The obvious analogue of the stopping rule (2) is (cf. (1))

1 1 1
Ftsro s -

(7) T = inf{n: n(s 5
In'1ln 2n 2n

The main results of this section are Theorems 2 and 3, which corre-
spond respectively to Lemma 1 and Theorem 1 in the single population
case. Theorem 2 shows that T defined by (7) is uniformly asympto-
tically efficient and Theorem 3 shows that it asymptotically provides

the correct coverage probability uniformly in pl,pz.
Theorem 2. Uniformly in O < P1»P, <1,
ET ~ cl(pa) ™ + (0} (@ .
1°1 272

The inequality in one direction is a consequence of the

following trivial lemma.

10




Lemma 4. For all 0 < pl,pz < 1 and all ¢
-1 -1
ET 3_c{(p1q1) + (pzqz) ) 2
Proof. From (4), Wald's identity and Jensen's inequality one obtains

¢t > E(r(/s + 1/s,. £} > {E(s, £ /T)}2

1rfir 2rfar rfar

+ {E(s IT)}‘1 - {plq1 ET-E[(slT— plT)le]}-l

2rf2r
+ 15,9, ET- Bl (s,p- 2,0 /1117 > BD7F {(pya) ™ + (2,007

To obtain asymptotic upper bounds on E(T) it is useful to

define (cf. (2))

T,(c) = infl{n:n/s < 1/c} .

infin

Since sinfin/n increases with n, for alil ¢ > 1 and 8 > 1 with

/o +1/8 = 1,

® T < max(T, (ac), T,(Bc))

In what follows a = (plq1 + pzqz)/pzq2 and B = (plq1 + quz)/plql, so

1o,

(9) a/pyq, =B/pyay = (pya; +P,4,)/(P,9,P,4,) = (plql)'1 + (p,9,

With these fixed values of & and B there is no ambiguity in writing

T, for Tl(uc) and T2 for Tz(Bc).

1
It is now possible to complete the proof of Theorem 2.

Obviously from (8)

11




(10) E(T) < E{max(Tl,Tz)} -f T,dP + f T,dP
{'r1 <1} {r,< 'rl}

Let € > 0 be arbitrary. Then

(1) s T,dP < [ T,dP  + J T,dP
{r,<1,} {r,<1), T,SBe(l4e)/pyq,}  {T,>Be(l4)/p3q,}

< (97" Be(MeIP(T,ST,} + (p,a) " Be PIT,>(p,a,) " Be(i+e)}

+7 IT, - (p,q,) "t Bc|dp
{1,>(p,a,)71 Be(14e)} z 7272

By Lemma 2
1 -2

(py3,) " Be BIT, > (pya,) " Be(1+e)} < 4(pya) €72

and by the Schwarz inequality and Lemma 2 again

IT,-(pya) " BeldP< [ (9,002 Elpya,T,Bel? PIT,> (pjap ™! Be(1te)} )
{T2>(p2q2)'1 Bc(1+e)}

< 4(pzq2)'1 el .

Putting these inequalities together with (9), (10), and (11) yields
ET < c{(p.q) "} + (poq Y +e 4+ 8/€2c)
= ety P22 ’
which completes the proof, as € is arbitrarily small.

Theorem 3. For T defined by (7), uniformly in O < P;sP, <1

1im P{vVc [1og(sle2T/sZTf1T)— log(plqzlpqu)]fgd =-®(x) .
c¥o

12




With the help of Lemma 5 below, the proof of Theorem 3 may be

carried out along the same lines as the proof of Theorem 1.

Lemma 5. Let u = {(p]_ql)-1 + (pzqz)-lrl. For all € > 0 and all

large ¢ (not depending on €)
P{|uT~c| > cel < 8fee? .
Proof. The proof of Theorem 2 shows that

P{T>c(l+e)p 1} = P(T,<T,, T,> (pzqz)-l Be(l+€)}

-1 2
+P{T,<T), T, > (pyqy) ac(l+€)} <4/ce” .

. The same upper bound for P{T< c(1~- e)u-l} follows by a similar

L calculation and the observation that T > min(Tl(ac), Tz(Bc)). 1




4. Remarks

(a) Unpublished numerical computations of H. Levene in the one-
sample case show that the asymptotic theory of Section 2 provides
good approximations for ¢ > 10 and reasonable ones for c as small as

3. It seems likely that similar results hold for two populationms.

(b) The heuristic principle which suggests the stopping rules (2)
and (7) is quite common in the literature of fixed precision estima-
tion (e.g., Anscombe, (1953)), and it leads to reasonable stopping
rules for more complicated log linear models. However, the uniform
asymptotic theory developed here seems to require new ideas for very
simple extensions.

One important generalization is a set of 2x2 tables with
equal odds ratios. Appropriate asymptotic theory might involve a
large number of observations from each of a small number of tables or
a large number of tables.

Another interesting variation is log linear regression. In
this case one might also wish to consider sequential design in

selecting values of the independent variable.

14
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